Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 975931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093188

RESUMO

Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, is an important public health problem mainly in Latin America, leading to approximately 12,000 annual deaths. Current etiological treatment for CD is limited to two nitro compounds, benznidazole (Bz) and nifurtimox (Nif), both presenting relevant limitations. Different approaches have been employed to establish more effective and safer schemes to treat T. cruzi infection, mostly based on drug repurposing and combination therapies. Amiodarone (AMD), an antiarrhythmic medicament of choice for patients with the chronic cardiac form of CD, is also recognized as a trypanocidal agent. Therefore, our aim is to investigate the combined treatment Bz + AMD on trypomastigote viability, control of T. cruzi intracellular form proliferation, and recovery of the infection-induced cytoskeleton alterations in cardiac cells. The combination of Bz + AMD did not improve the direct trypanocidal effect of AMD on the infective blood trypomastigote and replicative intracellular forms of the parasite. Otherwise, the treatment of T. cruzi-infected cardiac cells with Bz plus AMD attenuated the infection-triggered cytoskeleton damage of host cells and the cytotoxic effects of AMD. Thus, the combined treatment Bz + AMD may favor parasite control and hamper tissue damage.


Assuntos
Amiodarona , Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Amiodarona/farmacologia , Amiodarona/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Citoesqueleto , Humanos , Nitroimidazóis , Tripanossomicidas/farmacologia
2.
Microbiol Spectr ; 10(1): e0185221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138142

RESUMO

Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately 6 to 7 million people in Latin America, with cardiomyopathy being the clinical manifestation most commonly associated with patient death during the acute phase. The etiological treatment of CD is restricted to benznidazole (Bz) and nifurtimox (Nif), which involve long periods of administration, frequent side effects, and low efficacy in the chronic phase. Thus, combined therapies emerge as an important tool in the treatment of CD, allowing the reduction of Bz dose and treatment duration. In this sense, amiodarone (AMD), the most efficient antiarrhythmic drug currently available and prescribed to CD patients, is a potential candidate for combined treatment due to its known trypanocidal activity. However, the efficacy of AMD during the acute phase of CD and its interaction with Bz or Nif are still unknown. In the present study, using a well-established murine model of the acute phase of CD, we observed that the Bz/AMD combination was more effective in reducing the peak parasitemia than both monotherapy treatments. Additionally, the Bz/AMD combination reduced (i) interleukin-6 (IL-6) levels in cardiac tissue, (ii) P-wave duration, and (iii) frequency of arrhythmia in infected animals and (iv) restored gap junction integrity in cardiac tissue. Therefore, our study validates AMD as a promising candidate for combined therapy with Bz, reinforcing the strategy of combined therapy for CD. IMPORTANCE Chagas disease affects approximately 6 to 7 million people worldwide, with cardiomyopathy being the clinical manifestation that most commonly leads to patient death. The etiological treatment of Chagas disease is limited to drugs (benznidazole and nifurtimox) with relatively high toxicity and therapeutic failures. In this sense, amiodarone, the most effective currently available antiarrhythmic drug prescribed to patients with Chagas disease, is a potential candidate for combined treatment due to its known trypanocidal effect. In the present study, we show that combined treatment with benznidazole and amiodarone improves the trypanocidal effect and reduces cardiac damage in acutely T. cruzi-infected mice.


Assuntos
Amiodarona/uso terapêutico , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Amiodarona/efeitos adversos , Amiodarona/farmacologia , Animais , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Coração/efeitos dos fármacos , Cardiopatias/induzido quimicamente , Cardiopatias/patologia , Testes de Função Cardíaca , Humanos , Masculino , Camundongos , Nitroimidazóis/efeitos adversos , Nitroimidazóis/farmacologia , Parasitemia/tratamento farmacológico
3.
Parasitology ; 143(6): 704-15, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26996782

RESUMO

Transforming growth factor beta (TGF-ß) cytokine is involved in Chagas disease establishment and progression. Since Trypanosoma cruzi can modulate host cell receptors, we analysed the TGF-ß receptor type II (TßRII) expression and distribution during T. cruzi - cardiomyocyte interaction. TßRII immunofluorescent staining revealed a striated organization in cardiomyocytes, which was co-localized with vinculin costameres and enhanced (38%) after TGF-ß treatment. Cytochalasin D induced a decrease of 45·3% in the ratio of cardiomyocytes presenting TßRII striations, demonstrating an association of TßRII with the cytoskeleton. Western blot analysis showed that cytochalasin D significantly inhibited Smad 2 phosphorylation and fibronectin stimulation after TGF-ß treatment in cardiomyocytes. Trypanosoma cruzi infection elicited a decrease of 79·8% in the frequency of cardiomyocytes presenting TßRII striations, but did not interfere significantly in its expression. In addition, T. cruzi-infected cardiomyocytes present a lower response to exogenous TGF-ß, showing no enhancement of TßRII striations and a reduction of phosphorylated Smad 2, with no significant difference in TßRII expression when compared to uninfected cells. Together, these results suggest that the co-localization of TßRII with costameres is important in activating the TGF-ß signalling cascade, and that T. cruzi-derived cytoskeleton disorganization could result in altered or low TGF-ß response in infected cardiomyocytes.


Assuntos
Doença de Chagas/fisiopatologia , Costâmeros/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Miócitos Cardíacos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Parasita/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/parasitologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Trypanosoma cruzi/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...